# The Nature of Light: The Doppler Effect

[Português]

### Colour Shift

The colour of light is described as hotter towards the bluer end of the spectrum and cooler towards the redder end of the spectrum. Most objects reflect light that is of a "cooler colour" than the incident light from which it is generated. The reflected light from an efficient reflector returns light that is closer to the "colour temperature" of the incident light. A silver mirror reflects light of a colour that is extremely close to that of the incident light. Let us assume, for the sake of clarity in the following discourse, that our mirror is 100% efficient in this sense. The light it reflects (or re-emits) is exactly the same colour as the light it receives.

Despite the above assumption, if the mirror is receding from the source of the in­cident light, the light it reflects is of a "cooler colour" than the light it receives. The amount by which the reflected light is "cooler" than the incident light depends on the relative velocity with which the source and the mirror are receding from each other. This shift of the reflected light towards the redder end of the light-spectrum is generally known as the Doppler Effect.

### The Case of Sound Waves

The Doppler Effect is readily observable for sound waves. One example is the horn of a car. The horn has a natural or "normal" pitch. This is how it sounds when the car is stationary. However, if the car approaches you and then passes you at high speed, the sound changes. The pitch of the horn is higher than normal while the car is approaching. At the instant it passes you, the pitch of its sound is normal. As the car recedes, the pitch of its horn becomes lower than normal.

The same thing is experienced if the sound source is stationary and the listener is moving.

The mechanism of this phenomenon is easy to explain for sound waves. This is be­cause sound travels within the medium of air. Its velocity is therefore tied to the frame of reference of the stationary air. The velocity of the sound source is also measured against the frame of reference of the air in which the sound travels.

The above applet in its default "Classical Relativity" mode illustrates the Doppler Effect for sound waves. Both the observer and the transmittal medium (air) are stationary with respect to the applet window.

The crests of the sound waves emitted in front of the source are shown in blue. They arrive at the observer on the right of the applet window in more rapid succe­ssion than they are emitted by the source. This has the effect of giving the sound an apparently higher frequency (or pitch).

The crests of the sound waves emitted behind the source are shown in red. These impact the ears of an observer on the left of the screen with less rapidity than the source emits them. This has the effect of lowering the apparent frequency (pitch) of the sound.

Waves emitted either side of the source are shown in green. Their crests impact the top and bottom of the applet window with the same rapidity as the source emits them. This means that an observer at the top or bottom of the applet window will hear the sound source at its normal frequency (or pitch).

Imagine an observer standing where the "Classical Relativity" selector button is at the top of the applet window. As the source passes, you can see that he is first impacted by blue waves which gradually transform into green and then into red. This observer will therefore hear a high pitch gradually lowering to normal and then lowering further as the source recedes.

### The Case of Light Waves

The Doppler Effect is also observable for electromagnetic waves. In fact, some nav­igation systems use the Doppler Effect in radio waves as a means of determining the distance travelled by an aircraft. So the effect is definitely real. The Doppler Ef­fect, however, is not easy to explain for electromagnetic waves. Established theory ass­umes that an electromagnetic wave leaves its source with an outbound velocity c — the universally constant velocity of light. It also assumes that an electro­mag­netic wave approaches and "impacts" its destination (observer) at the same uni­ver­s­ally constant velocity c.

The established explanation is that the Doppler Effect for light is essentially the same as for sound. Waves emitted in the direction of the source's motion are comp­ressed and those emitted in the opposite direction are rarefied, as shown by the above applet in "Classical Relativity" mode. The source is, in reality, emitting only green light.

The reason given, however, is that within the frame of reference of a receding ob­server, space becomes contracted and time becomes dilated in the direction of the source's motion. Conversely, within the frame of reference of an approaching ob­server, space becomes elongated and time becomes compressed in the direction of the source's motion. The effect created is essentially the same as if each observer had his own private all-pervading luminiferous aether that was stationary with resp­ect to him.

An interesting consequence of this explanation is that within an approaching ob­server's space, the electromagnetic waves in transit are really vibrating at a higher (blue-shifted) frequency. Conversely, within a receding observer's space, the ele­ctromagnetic waves in transit are really vibrating at a lower (red-shifted) frequency. Can a passive observer really affect the frequency of electromagnetic waves that have not yet reached him, or the space within which they are travelling towards him?

Without postulating a contraction of space and dilation of time between the frames of reference of the light's source and destination, it is practically impossible to pro­pose any explanation of the Doppler Effect for light if its velocity is deemed to be a constant c in all frames of reference.

### An Alternative Explanation

Suppose that the velocity of light is always the universal constant c relative only to the frame of reference of its source. This makes the mechanism of the Doppler Eff­ect easy to explain.

Please select the "Alternative Relativity" mode by clicking the appropriate button at the top of the above applet. You might have to click it twice, depending on which browser you are using. The applet now shows the same green source emitting light waves. Now, however, the waves move outwards from the source at the constant universal velocity c, irrespective of any observer's frame of reference.

Light waves oscillate at a certain frequency. This frequency is determined by the light-source. It corresponds to the colour of the light. It is the rate at which the am­plitude of the electric force field of the light wave changes from zero through maxi­mum positive, back to zero and to maximum negative and back to zero again. As before, an observer, who is "stationary" relative to the source, experiences the light as having the frequency with which the source emitted it.

Now look at how the waves emitted by the moving source arrive at the left-hand side of the applet window. We may regard the left-hand side of the applet window as a receding observer. Waves are arriving at the left-hand side of the applet win­dow less frequently than they are being emitted by the source. To an observer here, the light will therefore appear to be of a lower frequency. It will appear redder, even though it in fact travelled all the way from the source to the observer as green light. The light appears to be red-shifted according to the Doppler Effect.

Now look at how the waves emitted by the moving source arrive at the right-hand side of the applet window. We may regard the right-hand side of the applet window as an approaching observer. Waves are arriving at the right-hand side of the applet window more frequently than they are being emitted by the source. To an observer here, the light will therefore appear to be of a higher frequency. It will appear bluer, even though it in fact travelled all the way from the source to the observer as green light. The light appears to be blue-shifted according to the Doppler Effect.

This alternative view does not require separately contracted space and dilated time for every possible observer that exists or could exist. It simply requires that electro­magnetic waves travel at the universal velocity c with respect to the source that created them. It simply requires that an electromagnetic stress applied at a point in space be adopted by the space surrounding that point with such a reluctance that causes it to effectively propagate outwards with velocity c. And that this process is independent of the velocity of the source relative to anything else.

Of course, if, having emitted light, the source then accelerates, that is a different story. The outward propagation would then be as if from the point in space that con­tinued in the uniform motion the source had at the instant the light was em­itted.

### The Æthereal View

In my nine essays about The Universe [see side panel], I gradually built up an observer-centred view based on the notion that the universe is made up of an all-pervading velocity fluid, which I refer to as the æther. I call it a velocity fluid be­cause it can only exist while travelling at the speed of light. Furthermore, it only manifests itself to objects that are accelerating. It does not interact in any way with objects travelling at constant relative velocity. It flows convergently, at the speed of light, into nanoscopic sink-holes at the centres of all fundamental constituents of matter, including all observers.

In this view, which is expounded fully in my essay entitled Events and Waves, a light-source simply etches electromagnetic stresses into each observer's passing æthereal influx. The passing æther flows radially inwards towards each observer at the speed of light, carrying the electromagnetic etchings with it, and thereby giving each his unique perception of the particular light source.

Please select the original "Classical Relativity" mode, in which the applet started, by clicking the appropriate button at the top of the above applet. This also illustr­ates how the light will travel if the source simply etches it into the passing æthereal flux which is falling radially inwards, at the speed of light, towards and into each observer — wherever he may be located.

The inflowing æthereal flux of an observer, at the right of the applet window, flows at velocity c towards him. The green light source is moving towards him at velocity v, which is a significant fraction of the speed of light. As this observer's æthereal flux passes the source, the source etches electromagnetic impressions onto this observer's æthereal flux at the frequency of green light. However, because the source is moving towards the observer at velocity v, the speed difference between the source and the observer's æthereal flux is c − v. Consequently, the etched oscillations will be closer together [of higher frequency] than if the source were not moving relative to the observer. So what ends up being etched onto this observer's æthereal flux is blue light.

Conversely, by the same reasoning, what will be etched onto the æthereal flux of an observer on the left of the applet window is red light. For all observers that are out of line with the motion of the source, what is etched onto their æthereal fluxes will be light of a frequency somewhere in between blue and red, according to a cosine rule.

The upshot is that the Æthereal View is entirely consistent with the Doppler Effect for electromagnetic propagation.

### To Run This Program

You need Java installed on your computer. Then:

1. download the file `doppler.jar` into your home directory..
2. extract 'doppler.jar'. [A 'jar' file is merely a 'zip' file with a '.jar' extension.]
3. a directory called 'doppler' appears in your home directory.
4. delete the jar file: '`doppler.jar`'
5. open a terminal in your home directory.
6. change directory: '`cd doppler`'
7. enter the command: '`java dopstart -en`'

Note: mainstream warnings notwithstanding, this program will neither blow up your computer nor wreak any other kind of fanciful mischief. It simply draws graphs on your screen. In the good old days this program simply ran embedded within the web page where its static image is now displayed. The embedded applet still runs in pre-2017 versions of browsers with Java 1.6 installed and the Web Start version still runs in pre-2019 versions of browsers with Java 1.8 installed. To read the rancid history of this sad retrogression in Web functionality, please click here.